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1. Introduction

We consider some iterative methods for solving the system of n nonlinear equations with n variables
F(x) =0, (1
where F : R — R” is assumed to be Lipschitz continuous. Throughout the whole paper we assume that there existsx™ € R"
such that F(x*) = 0.
One of the best-known methods for solving (1) is the generalized Jacobian-based Newton method. Such superlinearly
convergent methods for solving semismooth systems were proposed in [1-4]. The fundamental form of the method is
defined by

xllH-'H = XU” — (Vtkl)—lF(xﬂf?). k=0.1,... (2)

where V® could be taken as an element of some subdifferential of F at x'*). It was assumed to be an element of the
Clarke generalized Jacobian (Qi and Sun [1]), of the B-differential (Qi [2]), of the b-differential (Sun and Han [3]) and of the
«-differential (Gao [4]). Obviously, the increment x** — ¥ can be obtained as the solution of a linear system with
matrix V™ by any iterative or direct method. Moreover, Xu and Chang in [5], Potra et al. [6], Smietariski in [7] and others
introduced practical (i.e. computational ) ways of approximating various subdifferentials. In recent years some authors have
done interesting research on the nonsmooth equations (cf. [8-10]).

Cordero and Torregrosa in [11] proposed some new variants of Newton's method for solving smooth equations, based
on trapezoidal and midpoint rules of quadrature, These methods converge quadratically for a continuously differentiable
function F in some neighborhood of the solution x*. A generalization of methods based on quadrature formulas is presented
in[12].
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In this paper, a new version of an approximate Newton method for solving non-smooth equations with
infinite max function is presented. This method uses adifference approximation of the generalized Jacobian
hased on a weak consistently approximated Jacobian. Numerical example is reported for the generalized
Newton method using two versions of approximation,
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1. Introduction

Many important practical problems of mathematical programming require the solving of a non-
linear system of equations

F(x) =0, ()

where F : R” — R" is locally Lipschitz.
The generalized Jacobian method for solving such systems was proposed by Qi and Sun [13]
in the form

R — 0 _ V[’F(I'k')- Vi e BF(x‘“). (2)

where 8 F(x®)) is the generalized Jacobian of the function F at x*), defined by Clarke [5], and
a matrix V; is taken arbitrarily from d F(x*)). The iteration generated by Equation (2) is locally
superlinearly convergent under the assumption of semismoothness of the function F.

Xu and Chang [16] expanded method (2), replacing an iteration matrix with an adequately
defined consistently approximated Jacobian, to avoid the complicated evaluations of V. Xu and
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Abstract In this paper, we consider two versions of the Newton-type method [or
solving a nonlinear equations with nondifferentiable terms, which uses as itera-
tion matrices, any matrix from B-differential of semismooth terms. Local and
global convergence theorems for the generalized Newton and inexact generalized
Newton method are proved. Linear convergence of the algorithms is obtained under
very mild assumptions. The superlinear convergence holds under some conditions
imposed on both terms of equation. Some numerical results indicate that both
algorithms works quite well in practice.
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1 Introduction

Consider the following system of nonlinear equations
H(f) =0, xePc R~ (1)

In general case, a quasi-Newton method for solving nonlinear equations generates
a sequence {x®} by letting x'**! = x® 4+ s®_ where a search direction 5% is a
solution of the system of linear equations

Bis® = —H (x),
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